CS626: Speech, NLP and the Web

Machine Translation

10th November 2020

Content we are going to cover today

- What is Machine Translation (MT)?
- Why is MT difficult?
- Different paradigms of Machine Translation
 - Rule based Machine Translation
 - Statistical Machine Translation
 - Example based Machine Translation
 - Neural Machine Translation
- Details of Neural Machine Translation
- Evaluation of Machine Translation systems

What is Machine Translation?

- Automatic conversion of text from one language to another
 - Preserve the meaning
 - Fluent output text

Figure: Machine Translation

History of MT

- 1954: First public demo of MT by IBM
 - Georgetown IBM experiment
- 1956: First MT conference
- 1972: Logos MT system
 - Translating military manuals into Vietnamese
 - Rule based approach
- 1993: Statistical MT
 - IBM models
- 2013: Neural Machine Translation

Why MT is hard?

Why MT is hard?

Language Divergence

Language divergence

- Languages express meaning in divergent ways
- Syntactic divergence
 - Arises because of the difference in structure
- Lexical semantic divergence
 - Arises because of semantic properties of languages

Different kinds of syntactic divergence

• Constituent order divergence (Word order)

English: He is waiting for him. Hindi: वह उसके लिए इंतजार कर रहा है।

Subject	He	वह				
Verb	waiting	इंतजार कर रहा है उसके				
Object	him					

• Adjunction divergence

English: Delhi, the capital of India, has many historical buildings. Hindi: भारत की राजधानी दिल्ली में बहुत सी एतिहासिक इमारतें हैं

• Null subject divergence

English: I am going. Hindi: जा रहा हूँ।।

Different kinds of lexical semantic divergence

• Conflational divergence

English: He stabbed him. Hindi: उसने उसे छुरे से मारा

• Categorial divergence (Lexical category change)

English: They are competing. Hindi: वे प्रतिस्पर्धा कर रहे हैं

• Head-swapping divergence (Promotion or demotion of logical modifier)

English: The play is on. Hindi: खेल चल रहा है

The Vauquois Triangle

Image source: http://www.cs.umd.edu/class/fall2017/cmsc723/slides/slides15.pdf

Different paradigms of Machine Translation

- Rule based Machine Translation
- Statistical Machine Translation
- Example based Machine Translation
- Neural Machine Translation

Rule based Machine Translation

- Linguists create rules
- Three types
 - Direct
 - Map input to output with basic rules
 - Transfer based
 - Direct + Morphological and Syntactic analysis
 - The level of transfer is dependent on the language pairs
 - Interlingua based
 - Use an abstract meaning
 - Interlingua: Represent meaning of text unambiguously
 - It works at the highest level of transfer
- Performance of system highly dependent on experts who are creating rules

Statistical Machine Translation

- Learning from parallel corpora
- Three important things
 - Word translation
 - Word alignment
 - Word fertility management
- Problem to solve for SMT

$$\hat{e} = \arg \max_{e} \left(P(e|f) \right) = \arg \max_{e} \left(P(e).P(f|e) \right)$$

e is target language sentence, f is source language sentence, P(e) is language model in target language and P(f|e) is translation model.

Example based Machine Translation

- Majorly based on textual similarity
- Process
 - Analysis
 - Phrasal fragments of the input sentence
 - Transfer
 - Finding the aligned phrases from the database of examples
 - Generation
 - Recombination (Stitch together the aligned phrases)

Example based Machine Translation: Example

- He buys a book on Machine Translation.
- Phrasal fragments: He buys, a book, on, Machine Translation
- Aligned phrases: Identifies the aligned phrases from the database

He buys: वह खरीदता है

a book: एक पुस्तक

on: पर

machine translation: मशीन अनुवाद

Recombination: Recombine those phrases to construct a sentence (Adjusting morphology, reordering)

वह मशीन अनुवाद पर एक पुस्तक खरीदता है।

Phrase based Statistical Machine Translation

- Why?
 - Translation of phrases is more intuitive
- Process involved
 - Two-way alignment
 - Symmetrization
 - Expansion of aligned words to phrases (Phrase table construction)

Phrase based SMT: English to Hindi alignment

	वह	সাত	शाम	को	केक	बनाने	কী	योजना	बना	रहा	ŧ
He	~										
is						<u>(</u>					~
planning								~			
to											
make						~					
a											
cake											
in											l l
the											
evening			1								

Phrase based SMT: Hindi to English alignment

	He	is	planning	to	make	а	cake	in	the	evening
वह	~	1								
आज										
शाम										1
को										
केक							1			
बनाने					 ✓ 					
की										
योजना			~							
बना		1								
रहा										
8		1								

Phrase based SMT: Phrase generation

	वह	সাল	शाम	को	केक	बनाने	কী	योजना	बना	रहा	ġ
He	~										
is								1			~
planning								×			
to					2						
make						~					
a											
cake					~						
in											
the											
evening			~								

- Principle of coverage: Every word must be in a phrase
- Principle of non-vacuousness: No empty phrases
- Principle of consistency: The aligned phrases must be consistent in the sense all words of phrase in source languages

Neural Machine Translation

- Use of Neural network to predict the translation of a sentence
- Based on word sequence labeling
- Encoder-Decoder approach
 - Encoder encode the source sentence
 - Decoder generate the target sentence

NMT: Encoder-Decoder paradigm

- f_i = Source sentence words
- e_i = Target sentence words

Image source: http://www.phontron.com/class/mtandseq2seq2017/mt-spring2017.chapter7.pdf

NMT: Attention based Encoder-Decoder paradigm

Image source- http://www.iitp.ac.in/~shad.pcs15/data/nmt-rudra.pdf

Different types of attention mechanism

Global Attention Model

Local Attention Model

Image source: Luong, T., Pham, H. and Manning, C.D., 2015, September. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1412-1421).

Subword NMT

- Compound words, words with morphological variation (need for morphological segmentation), named entities are very common
- We can utilise this phenomena, if we look into subword level.

Inference using beam search

• In greedy search, at each time step, one best hypothesis is considered, in beam search at each step b best hypothesis is considered

Image source: Philipp Koehn. Neural machine translation. CoRR, abs/1709.07809, 2017.

Back-Translation

- NMT needs large number of parallel sentences to train a model
 - Costly and time consuming task
- Can we utilize monolingual data?
- Back-Translation
 - What we need?
 - MT system (L2->L1) and L2 monolingual data
 - From monolingual data in L2 (target language), produce synthetic translation in language L1.
 - Train model for $L1 \rightarrow L2$

MT Evaluation

- Manual evaluation
- Quality of sentence depends on two factors
 - Adequacy
 - How faithful the meaning of a sentence is transferred
 - Fluency
 - Acceptability of the native speaker

More fluent: मुझे भूख लग रही है। Less fluent: मैं भूखा महसूस कर रहा हूँ।

- Automatic evaluation measures
 - Word/phrase matching based
 - Edit distance based
 - Ranking based

BLEU score

- Bilingual Evaluation Understudy
- Word/Phrase matching based

$$BLEU = BP.exp(\sum_{n=1}^{N} (w_n.log(p_n)))$$

• BP is brevity penalty, to penalize based on the length of the generated sentence.

$$BP = \begin{cases} 1 & c > r \\ e^{(1-r/c)} & c <= r \end{cases}$$

c = the length of the candidate translation, r = the effective reference corpus length, p_n is modified n-gram precision, w_n is weight(uniform in BLEU)

BLEU score: Example

English: He is a painter. Hindi (Candidate): वह एक चित्रकार चित्रकार चित्रकार है। Hindi (Reference): वह एक चित्रकार है।

• Example:

- 1-gram precision is 1.
- Modified 1-gram precision is 4/6.
- The ratio of the number of phrases of length n present in candidate translation that are also present in reference translation and total number of phrases of length n in candidate translation.
- In modified n-gram precision maximum count from reference translation is considered for that particular n-gram.

TER

- Translation Edit Rate
- Edit operations
 - Insertion
 - Deletion
 - Substitution
 - Shift

 $TER = \frac{Number of edits}{Average number of reference words}$

• Example:

Reference: The TAs decided to give two homeworks this week. Candidate: This week the TAs decided to give two homeworks.

• This week is shifted in the last. (cost is 2 units)

References

- Pushpak Bhattacharyya. Machine translation. CRC Press, 2015.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics, pages 311-318. Association for Computational Linguistics, 2002.
- Philipp Koehn. Neural machine translation. CoRR, abs/1709.07809, 2017.
- Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study of translation edit rate with targeted human annotation. In Proceedings of association for machine translation in the Americas, volume 200, 2006.

References

- Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney. Character: Translation edit rate on character level. In Proceedings of the First Conference on Machine Translation: Volume Shared Task Papers, volume 2, pages 505-510, 2016.
- R Ananthakrishnan, Pushpak Bhattacharyya, M Sasikumar, and Ritesh M Shah. Some issues in automatic evaluation of english-hindi mt: more blues for bleu. ICON, 2007.
- Gregor Leusch, Nicola Ueffing, and Hermann Ney. Cder: Efficient mt evaluation using block movements. In 11th Conference of the European Chapter of the Association for Computational Linguistics, 2006.
- Gregor Leusch, Nicola Ueffing, and Hermann Ney. Cder: Efficient mt evaluation using block movements. In 11th Conference of the European Chapter of the Association for Computational Linguistics, 2006.

References

- Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study of translation edit rate with targeted human annotation. In Proceedings of association for machine translation in the Americas, volume 200, 2006.
- Kevin Duh. Ranking vs. regression in machine translation evaluation. In Proceedings of the Third Workshop on Statistical Machine Translation, pages 191-194. Association for Computational Linguistics, 2008.
- Alon Lavie and Abhaya Agarwal. Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments. In Proceedings of the Second Workshop on Statistical Machine Translation, pages 228-231. Association for Computational Linguistics, 2007.

Thank You